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Abstract 
By using well-known inequalities, we construct numerous interesting and significant links among various 

weighted divergence measures in this study. Basically, this work applies well-known information theory inequalities Except 

various relations, we tried to get bounds of   
        ,   

                   ,   
        ,          , L       , 

         ,           in terms of weighted divergence measures. Some relations in terms of weighted Arithmetic Mean 

         weighted Geometric Mean           weighted Harmonic Mean          ,weighted Heronian 

Mean         , weighted Contra Harmonic Mean         , weighted Root Mean Square         and weighted 

Centroidal Mean         , are also obtained. 

Keywords: Standard Inequalities, weighted Divergence Measures, Convex and Normalized function, Csiszar’s 

generalized f- Divergence Measure, Seven Standard Means. 

1 Introduction 

Let 

        
 
  

 
       

 
   

 
         ∑  

 
 
     ,     

be the collection of all weighted discrete probability distributions that are finite. 

Only for convenience, discrete distributions are limited in this case; identical 

findings apply to continuous distributions as well. If we take  
 
 ≥ 0 for some i = 

1to   ,then we have to suppose that 0   (0) =   (
 

 
), ∑   

 
    

 
  . 

By properly specifying the function  , numerous divergence measures can be 

derived from these generalized f- measures. Due to its compact nature, provided 

by Csiszar's f- divergence,         ∑  
 

 
    (

  
 
 

) 

And its weighted form is defined as given below by many authors as 

           ∑   
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), (1.1) 

                               where  ,      . 
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Where  : [0, )  (0, )  ℛ. (Set of real nos.) is real, continuous, and convex 

function and                                               ∈ 

Γn, where  
 
 and  

 
 are probabilities. By properly specifying the convex 

function  , several known divergences can be derived from these generalised  

measures. The following weighted divergence measurements are obtained by 

(1.1): 

Following measure are due to (Jain and Srivastava [7]) in weighted form 
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         k=1,3,5,7….                    (1.2) 
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       k=1,3,5,7….    (1.3) 

We are introducing the different divergences in weighted form which are well 

known in literature:  

          =∑   
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)                      [  ]       (1.4) 
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                      ( due to [12])                 (1.5) 

L         ∑   
 
   

       
 

     
    (

     

 √    

)           due to [11] )              (1.6)   

            ∑   
 
   

  
 

 
 

  ( Renyi’s[13], second order entropy in weighted 

form)  

                                                                                                                     (1.7) 

          ∑   
 
   

|     |
   

       
 

           ,  ∈         (Puri and Vineze 

Divergence measure in weighted form due to [9]                                     (1.8) 
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   (

   
     

)  
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            = weighted Relative Jensen- Shannon divergence (Sibson [14])     

                                                                                                           (1.9)           

         ∑  

 

   

(
 
 
  

 

 
)    (

 
 
  

 

   
) 

   = weighted Relative Arithmetic- Geometric Divergence (Taneja [15])   

                                                                                                      (1.10) 

         
 

 
[                 ]  

  *∑   
 
   (

     
 

)    (
     

 √    

)+,                                                    (1.11) 

               = weighted Arithmetic- Geometric Mean Divergence (Taneja [15])   

          = ∑   
 
   

              
 

      
                                                   (1.12)      

  = Symmetric weighted Chi – square Divergence (Dragomir &others [4])  

           [                   ]  ∑   
 
     

 
  

 
    (

     
  

 

)

     (1.13)  

                    = Relative weighted J- Divergence [3] 

         
 

 
∑   
  
   (√   √  )

 

                                                           (1.14) 

                    = weighted Hellinger Discrimination [5] 

         ∑   
 
   

       
 

       
                                                                  (1.15)     

                      = Weighted Triangular discrimination [2] 

Except above all we get below weighted divergence due to Jain and Saraswat 

[6]   

  
 
        = ∑   

 
   

       
  

  
 
  

 
     

   
       

 

       
 
         ,    k=1,2,3….          (1.16) 
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 II. Well Known Inequalities    

The following inequalities are well-known in the literature of both pure and 

applied mathematics, and they are crucial for demonstrating a number of 

intriguing and significant findings in information theory. 

1+   ≤    ≤ 1+                    ,  >0                                                                      (2.1) 

 

   
 ≤          ≤               ,  >0                                                            (2.2)  

   III. Relations Among Various Weighted Divergence Measures  

Now, using inequalities (2.1) and (2.2), we will establish bounds for some 

measures in terms of other weighted divergence measures as well as other 

significant and fascinating relationships between various divergence measures. 

 Proposition 1: -Let  ,      x   then we have 

  
 
        -     

 
         ≤                                            (3.1) 

              ≤      
 

           ,       k=1,2,3….                         (3.2) 

Proof: -Put   

                
       

 

       
 
  in (2.1) we get 

1+ 
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Now multiply by         
       

  

      
    

, k=1,2,3….    , adding over all i = 1to          
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 +∑   
 
   

       
    

       
    

   
       

 

       
 
   

Then  

             +               ≤    
 
        ≤               

    
 

                                                                                              (3.3) 

From 2nd & 3
rd

 part of above we get (3.1) & from Ist & 3
rd

, we have (3.2). 



International Journal of Engineering Sciences Paradigms and Researches (IJESPR)  

Volume 52, Issue 02 and Publication Date: 1
st
 April, 2023  

An Indexed, Referred and Peer Reviewed Journal  

ISSN: 2319-6564  

www.ijesonline.com 

 

IJESPR 

www.ijesonline.com 

5 

 

    For   k=1,2,3….    We get given below (from (3.1) & (3.2) ) 

 For k= 1,    
 
        -   

 
         ≤                           (3.4) 

                                           ≤    
 
             

For k= 2,   
 
        -   

 
         ≤              & 

                             ≤    
 
           

  For k= 3,   
 
        -   

 
         ≤              & 

                               ≤    
 
          and so on… 

Proposition 2: -Let  ,      x   then we have 
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         &                                    (3.5) 

    
 

             
   

 
        where k=1,3,5,7….                              (3.6)    

Proof: - Put   
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Now multiply by      
       

   

      
 
 

  , k=1,3,5,7….  adding over all i = 1to      
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From 2nd & 3
rd

 part of above we get (3.5) & from Ist & 3
rd

, we have (3.6) 

    For k=1,3,5,7….  We get given below (from (3.5) & (3.6) ) 
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For k= 1,   
 

 
         -   

 

 
            

 
         & 

                    
 
             

 

 
        

For k= 3,   
 

 
         -   

 

 
            

 
         & 

                    
 
             

 

 
         and so on ….. 

Except from Ist &2
nd

 part of (3.7) we get 

                   
 
             

 

 
                                                    (3.7) 

Proposition 3: -Let  ,      x   then we have 

          -2  
 
                   &                                  (3.8) 

          +                                                          (3.9) 

Proof: - Put   

                 
(√   √  )

 

 √    

 in (2.2) we get 
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Multiply above by     
              

 

      
 , adding over all i = 1to       
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  ≤ ∑   
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∑   
 
   

              
 

      
 – 2∑   
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 ≤            

                    ≤ ∑   
 
   

   
 
  

 
   

       
 
 

  ∑   
 
   

              
 

      
  ,so 

        -2  
 
                           -              

                                                                                                                     (3.10)    

 From Ist  & 2nd part of above we get (3.8) & from 2nd & 3
rd

, we have (3.9) 

If we add (3.8) & (3.9) we get  

2                       + 2  
 
                                            (3.11)           

From 2nd & 3
rd  

 of (3.10) we have  

                                                                                       (3.12)  

From (3.8) & (3.12) we have 

          -2  
 
                                            (3.13)  

Proposition 4: -Let  ,      x   then we have 

L         +            
 

 
   

 
         &                                             (3.14) 

          L         + 2 ∑   
 
   

√           
 

       
 

                                  (3.15) 

Proof: - Put   

                 
(√   √  )

 

 √    

 in (2.2) we get 
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Multiply above by     
       

 

       
 , adding over all i = 1to     
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       √    
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Then 
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       - 

                                                                                                                   (3.16) 

From Ist & 2nd part of above we get (3.15) & from 2nd & 3
rd

, we have (3.14) 

Also, from (3.14) we have 

          
 

 
   

 
                                                                                (3.17) 

Proposition 5: -Let  ,      x     and ∑   
 
    

 
 ∑   

 
    

 
     then we 

have 

                                                                        (3.18) 

                  
 

 
 ∑   

 
   

       
 

√    

                                        (3.19) 
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Here          ∑   
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) =1= Weighted Arithmetic mean divergence  

Proof: - Put   
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 in (2.2) we get 
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) , adding over all i = 1to     
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 -1                              (3.21) 

From 2nd & 3
rd

 part of above we get (3.20) & from Ist & 3
rd

, we have (3.19) 

Except these from (3.19) & (3.21) we have 
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                                                           (3.23)   

&                                                                                    (3.24)  

Now (3.22) - (3.23), we have 

                    , so                                (3.25)   

From (3.24) & (3.25) we get (3.18) 

Proposition 6: -Let  ,      x     and ∑   
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     then we 

have 

         
 

 
 -                                                                                 (3.26)  
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[            ]                                           (3.27) 

Proof: - Put   

                
  
 
 

 in (2.2) we get 

  
     

   ≤     (
     
 
 

)  
  
 
 

 

Multiply above by     (
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) , then 

 

 
≤      +          

 

 
[            ]                                        (3.28)  

From Ist & 2nd part of above we get (3.26) & from 2nd & 3
rd

, we have (3.27) 

Proposition 7: -Let  ,      x     and ∑   
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     then we 

have 
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     -                                                                      (3.29) 

 

 
                                                                         (3.30) 

Here          ∑   
 
   (

     
 

) =1= Weighted Arithmetic mean divergence  

&           ∑    
   

      
     

  = Weighted Harmonic mean divergence 

Proof: - Put   

                
  
 
 

 in (2.2) we get 

  
     

   ≤     (
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Multiply above by         , adding over all i = 1to    

∑    
       

  
     

≤  ∑    
          (

   
 
  

  

  
 

)  ∑    
       

  
 
 

 ,then 

                ∑     
 
   -    ∑   

  
    

 
   (

  
 

     
)   ∑     

 
    

                 - 2             

After changing     , we get 

                 - 2                                                          (3.31)  

From Ist & 2nd part of above we get (3.30) & from 2nd & 3
rd

, we have (3.29) 

Some Relations: because 

                                         

                                                                      (3.32) 

It is well known inequalities in literature. 

With the aid of the aforementioned inequalities, we can now obtain a few other 

significant relations between distinct divergences, and these are as follows. 

1. from (3.18) & (3.32) , we have 
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                                                                                                          (3.33)  

2.   from (3.29) & (3.32) , we have 

     -                                                    

                                                                                                                       (3.34)  

3.     from (3.18) & (3.29) , we have 

     -                                                 (3.35)   

 4. do (3.27) -(3.29), we get  

                   
 

 
[            ] -                

i.e.,2        +2[                  ]              

i.e.,2        +                                                     (3.36) 

5.  from (3.4), (3.7) & (3.17), we get 

  
 
        -   

 
                     

 

 
   

 
          

 

 
 
 

 
         

6.  from (3.4) & (3.14) 

  
 
        -   

 
                    

 

 
   

 
        - L        
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